风化作用对侵蚀构造地貌碳质砂岩高边坡的影响
时间:2023-04-12 06:33:51
风化作用对侵蚀构造地貌碳质砂岩高边坡的影响一文创作于:2023-04-12 06:33:51,全文字数:14085。
刘金芳,屈玉龙
(中交路桥建设有限公司,北京 101121)
1 研究背景
贵州玉石高速公路项目TJ06标段工程地区岩性为泥质中风化碳质砂岩,属于半成岩,亦属于极软岩类。半成岩是一种特殊的岩土体,与一般的岩石及土体均有明显的区别,当半成岩膨胀性较高时遇水更易崩解,在物质组成、物理力学性质、结构和构造方面同时具有部分土体和岩体的特征。因此,在工程中含有该类岩体时地质情况往往更复杂。
伴随岩石风化作用,碳质砂岩的物理力学性质及水理性质赓续降低。目前国内外的众多学者对岩石的风化作用展开了相关研究,莫彬彬等[1]提出对微生物-矿物复合体微环境进行研究,以作为突破口揭示微生物对岩石风化作用,并且将研究成果应用于矿物加工工业和农业生产。孙士宏等[2]通过对红砂岩的风化机理进行探讨,将红砂岩风化机理归纳为有机酸腐蚀机理、生物作用机理等,并且针对风化作用机理和红砂岩的特征,总结了红砂岩石刻文物修复和加固技术。赵勇刚等[3]利用不同风化程度的红砂岩,进行声发射特性的对比研究,得出结论,风化更彻底的分组较风化程度弱的分组声发射数量显著增多,可以推断,风化较为严重的岩体内部裂隙和节理更多。此外,该研究揭示了不同风化程度红砂岩载荷-声发射累计关系,得出了载荷-声发射拟合关系式。戎岩[4]以陕西关中地区的砂岩为研究对象,从物理风化、生物风化和化学风化3个方向浅析了关中地区砂岩风化成因,并提出砂岩质文物保护方法。杨志法等[5]对位于浙江省衢州市的古城墙不同岩石进行试验研究,利用三维激光扫描的方式,测量研究对象的风化剥落深度,得出结论,古城墙岩石抗风化能力最强的是黄绿色火山角砾岩,抗风化能力最差的是灰绿色凝灰岩。值得注意的是,古人制作的勾缝蛎灰抗风化能力强于被勾缝的岩石。李二强等[6]以甘肃岷县木寨岭隧道碳质板岩为研究对象,得出结论,水-岩及风化作用对岩样具有显著劣化效应,表现为细微累计劣化损伤。
基于学者研究的基础,本文将贵州玉石高速公路项目高边坡中碳质砂岩作为研究对象,通过对碳质砂岩风化类型、风化影响因素和风化作用后的特征分析,揭示了碳质砂岩的风化机理。研究结果对贵州玉石高速公路高边坡TJ06标段的现场施工和后期养护具有不可忽视的实际意义。
2 碳质砂岩基本特征
资料表明,该地区的碳质砂岩总体上呈现灰黑色,局部含煤和较大砾石,砾石分选性及磨圆度均较差,棱角明显,天然含水量较高,在该类岩石体中崩塌、滑坡、落石等地质灾害发育更频繁,岩石更破碎,工程地质问题较多。
贵州地区碳质砂岩属于典型的半成岩,其粒度成分和矿物成分是决定其工程地质性质的物质基础,试验结果测得容重一般为1.95~2.15 g/cm3;孔隙度较大,为25%~40%;碳质砂岩的砂砾体积分数一般为80%以上,黏粒和粉粒体积分数较少,一般在10%~20%。除此之外,碳质砂岩的黏土矿物组成主要为伊利石/蒙脱石混层矿物,这使得碳质砂岩遇水具有膨胀性,但是由于碳质砂岩以膨胀性中等的伊利石/蒙脱石混层矿物为主,使得碳质砂岩的膨胀性较低。由于碳质砂岩主要为泥质结构,天然含水量较高,节理、裂隙弱发育,现场用地质锤锤击,声音沉闷,无回弹,在天然状态下用手可捏碎,浸水后膨胀且崩解。基于以上情况,工程地区为碳质砂岩的地区,工程地质条件更差。边坡失稳发生在外界各种因素的共同作用下(如降雨、风化、人工开挖等)[7]。
高边坡施工过程中,应考虑到碳质砂岩孔隙度较大、砂砾体积分数占比大且由于工程区域碳质砂岩含有伊利石/蒙脱石混层矿物,遇水具有膨胀性的特点,严格修建导排水工程,防止降雨和地表水汇入对施工边坡造成威胁,甚至导致滑坡、崩塌等地质灾害。
3 碳质砂岩风化机理
3.1 风化类型
碳质砂岩本身工程地质性质较差。用于工程中时,应充分考虑影响高边坡施工的各种因素,风化作用对高边坡施工、高边坡防护措施的选择和后期养护的影响不可忽视。风化类型按风化作用的因素和性质一般分为3 大类,分别为物理风化、化学风化、生物风化。其本质的区别是是否有次生矿物的生成和是否有生物的参与。
3.1.1 物理风化作用[8]
受风化作用的岩石在原部位出现机械破裂不产生新的化学物质的过程称为物理风化作用。物理风化作用除了受岩石组成物质和昼夜温差效应影响之外,岩石节理面和植物根劈作用同样可以加速物理风化过程。
3.1.2 化学风化作用
化学风化作用,即风化过程中产生离子、分子间的化学反应且参与反应的物质不是来源于生物。一般化学风化作用与水密切相关,空气中的氧气、二氧化碳和降雨中自身的部分可参与化学反应的化合物等通过水介质经过氧化反应、水解水化反应等化学反应产生气体或其他化合物共同形成化学风化作用。
3.1.3 生物风化作用
简单地说,在动植物和微生物共同参与下的破坏过程称为生物风化作用。物理和化学风化作用共同参与、共同影响,加上生物的参与就是生物风化作用。生物化学风化是生物生命生活排泄、分解物和岩体产生化学反应,生成新的化学物质的过程;生物物理风化作用是指生物的生命活动,如植物根劈、穴居动物掘洞,加速岩石裂隙的延伸和改变岩石的结构的过程。
3.2 风化作用的影响因素
岩石风化作用受到多源因素的控制。包括岩石内在因素和外在条件的限制,又可细分为岩石的矿物组成、岩石的成因、结构与构造、岩石环境(如温差、降雨量、植被覆盖情况等)、地质构造复杂程度等诸多的条件共同制约。
组成岩石的矿物成分的化学稳定性、抗风化能力较强矿物的含量与种类的多少共同控制着岩石的抗风化能力。根据组成岩石的常见矿物化学稳定性从强到弱排序依次为:石英、正长石、酸性斜长石、基性斜长石、黑云母。以石英和正长石抵抗风化能力为最佳。石英、正长石的颜色较黑云母和基性斜长石矿物颜色较浅,在工程中也可通过矿物的颜色做一个大致的判断,即浅色矿物具有更强的抗风化能力。风化作用对侵蚀构造地貌碳质砂岩高边坡的影响
岩石的成因环境与岩石目前所在的环境差异较大时,岩石更容易被风化;而当岩石生成环境与岩石现在环境相似时,岩石更不易被风化。三大类岩石种类中,沉积岩由于形成时的环境和风化环境较为类似。所以,沉积岩较其他两大类岩石的抗风化能力普遍较强。
地质构造也是风化条件的影响因素。地质构造对风化作用的影响主要体现在岩体受地质构造运动作用时,岩层受挤压、拉升造成岩体出现断层、节理、裂隙。岩石节理、裂隙的出现增加了水、空气和温度的流通量,提高了接触面积。而接触面积的增加会提高化学反应速率,导致岩体的抗风化能力降低。
除了上述影响因素外,还包括气候条件。气候条件对风化的影响集中体现在气温变化、降水量。气温条件的不同会直接影响化学反应速率,气温条件还影响风化作用的类型。在干旱而寒冷的气候条件下,往往是以物理风化作用为主,风化作用后的产物也不彻底;而在潮湿而温暖的气候条件下,是以除物理风化作用的另外2 种风化作用为主,岩石经过风化后形成潮湿且较厚的土壤层。降雨量增多同时也会对风化作用的加快起促进作用,且降雨量充足、温
提醒您:因为《风化作用对侵蚀构造地貌碳质砂岩高边坡的影响》一文较长还有下一页,点击下面数字可以进行阅读!
《风化作用对侵蚀构造地貌碳质砂岩高边坡的影响》在线阅读地址:风化作用对侵蚀构造地貌碳质砂岩高边坡的影响