下书网

故事栏目

外国小说文学理论侦探推理惊悚悬疑传记回忆杂文随笔诗歌戏曲小故事
下书网 > 小故事

基于CNN-GRU和CA-VGG特征融合的调制识别模型

时间:2023-04-12 11:52:55

基于CNN-GRU和CA-VGG特征融合的调制识别模型一文创作于:2023-04-12 11:52:55,全文字数:20494。

基于CNN-GRU和CA-VGG特征融合的调制识别模型

李?鳎?獬疏ぃ?及?/p>

(浙江理工大学信息科学与工程学院,浙江 杭州 310018)

0 引言

自动调制识别是目前非协作通信领域的关键技术,广泛应用于电子对抗、国家频谱管理中,随着技术的发展,现在的调制方式、通信信道越来越复杂,对自动调制识别的要求也越来越高,所以自动调制识别技术仍是通信信号处理领域的一个研究重点技术。

传统的AMR(Automatic Modulation Recognition,自动调制识别)主要包括基于似然的假设检验方法和基于机器学习的分类方法。基于似然的假设检验方法是通过多重假设检验的问题来进行分类,通过设定门限进行判决来实现调制识别[1-2],但该方法过于依赖先验的调制模型,并且由于复杂的似然函数导致计算量偏大,因此其使用受到一定的限制。基于机器学习的分类方法是通过提取信号中的某些固定特征,再根据提取到的特征通过机器学习的分类算法进行分类识别[3-5],通常用于识别的特征包括小波变换特征、瞬时频率特征以及循环平稳特征等。不同的调制方式的特征各不相同,因此通过机器学习算法可对信号不同调制方式的特征进行分类。但是在实际信道中,由于噪声、衰落等因素,导致信号的特征并不明显,进而使得分类的准确率降低。

近年来,深度神经网络(DNN,Deep Neural Network)在许多领域取得了丰硕的成果,尤其是在计算机视觉和自然语言处理方面。深度学习(DL,Deep Learning)技术的网络深度大大超过以往神经网络的深度,通过深度学习可以提取信号的浅层特征,并得到浅层特征的高维表征,并通过深度网络的自学习构建更好的分类判决模型,深度学习网络在图像领域,特别是图像的识别领域有着较大的发展[6-7],同样深度神经网络在自动调制识别上也存在较大的应用价值[8-9]。文献[10]首次将卷积神经网络应用与调制识别领域,并提出了公开调制信号数据集RadioML2016.10a。文献[11]提出一种基于卷积神经网络(CNN,Convolutional Neural Networks)和长短期记忆(LSTM,Long Short-Term Memory)的全连接深度神经网络(CLDNN,Convolutional Long short-term memory fully connected Deep Neural Networks)模型,实现了调制识别,但由于模型的深度较浅,分类效果并不理想。文献[12]提出了一种基于卷积神经网络的调制识别方式,首先通过交叉残差连接从星座图像中学习最相关的调制信号特征,训练网络完成后,可以通过模型对调制信号进行识别,但分类的准确率并不理想。文献[13]提出了一种基于生成对抗网络的通信信号调制识别方法。先利用辅助分类器生成对抗网络对数据进行扩充,再将经典模型AlexNet作为分类器实现了调制识别,但该方法稍显繁琐且分类准确率不高。

针对以上问题,本文提出了一种自动调制识别的特征融合(MFF,Multi-Feature Fusion)网络,首先提出两种不同的神经网络对调制信号的深层特征进行提取,通过将星座图输入到嵌入了注意力机制(CA,Coordinate Attention)[14]的VGG16网络(CA-VGG)模块中提取二维图像特征,通过将I/Q和A/P数据输入到CNN-GRU(Gate Recurrent Unit)模块提取一维时间序列特征,然后充分利用不同特征输入的互补性进一步构建融合模型,以达到有效提高信号分类准确率的目的。最后,针对RadioML2016.10a数据集进行了消融实验和对比实验,结果表明本文提出的MFF模型能够有效实现调制信号的分类任务,并能有效提高调制识别的准确率。

1 信号模型

1.1 信号时域模型

假设通过衰落信道和高斯白噪声的不同调制信号模型为:

式中S(t)表示接收到的调制信号;x(t)为发送端发送的信号;h(t,τ)dτ表示莱斯和瑞利衰落通道;n(t)为加性高斯白噪声。

首先将收到调制信号的瞬时幅度和瞬时相位值进行提取,由于调制信号是由I/Q两路信号构成,可以将接收到的信号S(t)通过I通道信号SI(t)和Q通道信号SQ(t)表示为式(2),则信号的瞬时幅度A(t)和瞬时相位P(t)分别由式(3)和式(4)所得:

1.2 信号星座图

星座图是一种常用于信号处理的可视化信号分析方法。通过将归一化的I/Q数据映射到复平面上的散射点,可以得到星座图作为调制无线电信号的二维表示。但是复平面是无限延伸的,而图像描述的区域是有限的,如果区域太大,星座图上的点会聚集到一起导致互相重叠,如果区域太小,星座图的部分信号特征会被忽略。考虑到算法的复杂度和性能,本文选择3×3的复平面并将转换为分辨率为224×224的星座图如图1所示。

图1 11种调制方式星座图

2 MFF识别算法

2.1 MFF网络模型

MFF网络模型的结构包括CA-VGG模块和CNN-GRU两个模块。通过这两种模型可以有效地提取调制信号中的重要特征。最后为了充分利用不同输入类型数据特征的互补性,将两个模块的输出进行融合获得信号调制方式的预测概率。

本文提出的MFF模型解决了缺少多维度特征输入的问题,通过将CNN-GRU和CA-VGG两个网络模型进行融合搭建起的MFF网络模型,提高了网络的泛化、感知能力,增强了特征提取能力。它可以将原始I/Q、A/P数据和星座图的作为网络的输入,并将这两种不同的输入送到两种模型中对进行特征提取。首先通过CA-VGG网络提取星座图的深层特征数据,再通过CA-VGG网络提取I/Q、A/P数据的细节特征数据,保证了对不同输入数据的特征进行高效提取,同时也兼顾全局及局部信息的作用,可以更有效地提取调制信号的特征数据,MFF网络的具体网络框架如图2所示:

图2 MFF网络结构

2.2 CA-VGG模块

VGG16因其具有较好的深度及宽度,在分类的应用中具有一定的优势。VGG16网络的深度为16层,这种较深的网络通过逐层的抽象,能够不断学习由低到高各层的特征,在VGG16的基础上引入CA注意力单元具体的网络结构如图3所示,可以充分提取信号的深层特征,从而提高调制识别的准确率。

图3 CA-VGG网络结构

将I/Q数据转换为224×224的星座图像作为CA-VGG模块的输入,并对VGG16网络做了如下改进:首先在每个卷积层中均加入CA注意力单元来学习各通道的重要程度,通过注意力机制来进一步提高对调制识别有用的特征,同时抑制对调制识别无用的特征。为避免在训练中梯度爆炸及梯度消失的情况,本文在每个CA注意力单位后通过批标准层(BN,Batch Normalization)用于加快网络的训练和收敛的速度。激活函数选用Selu来增强网络的非线性、防止梯度消失、减少过拟合并提高网络训练的速度。考虑到全连接层会产生

提醒您:因为《基于CNN-GRU和CA-VGG特征融合的调制识别模型》一文较长还有下一页,点击下面数字可以进行阅读!

《基于CNN-GRU和CA-VGG特征融合的调制识别模型》在线阅读地址:基于CNN-GRU和CA-VGG特征融合的调制识别模型

热门书籍

热门书评

推荐小故事